
Pertanika J. Sci. & Technol. 21 (1): 193 - 204 (2013)

SCIENCE & TECHNOLOGY
Journal homepage: http://www.pertanika.upm.edu.my/

ISSN: 0128-7680 © 2013 Universiti Putra Malaysia Press.

populate knowledge bases.
Depending upon the ability to process

natural language input, natural language
interface can be classified into two categories,
namely full natural language interface and
restricted natural language interface. Full
natural language interfaces provide the ease of
inputting a natural language query without any

A Negation Query Engine for Complex Query Transformations

Rizwan Iqbal* and Masrah Azrifah Azmi Murad
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Selangor,
Malaysia

ABSTRACT

Natural language interfaces to ontologies allow users to query the system using natural language queries.
These systems take natural language query as input and transform it to formal query language equivalent
to retrieve the desired information from ontologies. The existing natural language interfaces to ontologies
offer support for handling negation queries; however, they offer limited support for dealing with them.
This paper proposes a negation query handling engine which can handle relatively complex natural
language queries than the existing systems. The proposed engine effectively understands the intent of
the user query on the basis of a sophisticated algorithm, which is governed by a set of techniques and
transformation rules. The proposed engine was evaluated using the Mooney data set and AquaLog dataset,
and it manifested encouraging results.

Keywords: Natural language interfaces, ontology, semantic web, negation queries, search engines

INTRODUCTION

Many natural language interfaces have been developed to date. The concept of natural language
interfaces is not new. Natural language interfaces were initially used for databases which
allowed users to submit their queries in natural language instead of writing in SQL query
format. Since the emergence of ontologies in the field of computer science, researchers have
started developing interfaces for them. Natural language interfaces facilitate users to express
their information needs in natural language that they are familiar with and can consequently

Article history:
Received: 31 March 2012
Accepted: 31 August 2012

E-mail addresses:
mail.rizwaniqbal@yahoo.com (Rizwan Iqbal),
masrah@fsktm.upm.edu.my (Masrah Azrifah Azmi Murad)
*Corresponding Author

Rizwan Iqbal and Masrah Azrifah Azmi Murad

194 Pertanika J. Sci. & Technol. 21 (1): 283 - 298 (2013)

restriction of vocabulary, whereas restricted natural language interfaces contradict the former
and restrict users to input a restricted vocabulary.

Natural language interfaces work by converting natural language into formal semantic
query (Tablan et al., 2008a). Different interfaces rely on distinct techniques and algorithms to
translate natural language query into formal semantic query. Some natural language interfaces
that support full natural language support are Semsearch (Lei et al., 2006), NLP-Reduce
(Kaufmann et al., 2007), FREya (Damljanovic et al., 2010), QuestIO (Tablan et al., 2008b),
Spark (Zhou et al., 2007), Q2Semantic (Wang et al., 2008) and NLION (Ramachandran &
Krishnamurthi, 2009). Natural language interface that comes under the category of restricted
natural language interfaces include Orakel (Cimiano et al., 2008), and AquaLog (Vanessa et
al., 2007).

Natural language queries with negation are a very usual and expected input from the user.
In this study, Mooney dataset (MooneyData, 1994), which is widely applied for the evaluation
of natural language interfaces and systems (Wang et al., 2007; Damljanovic et al., 2010;
Tablan et al., 2008b; Kaufmann et al., 2006; Iqbal et al., 2012) was used. This dataset has a
number of negation queries in it. This paper proposes a negation query handling engine, which
effectively caters negation natural language queries. The proposed negation query handling
engine supports full natural language rather than restricted language. The proposed engine
effectively understands the intent of the user’s negation query on the basis of a sophisticated
algorithm, which is governed by a set of techniques and transformation rules. The rest of this
paper is organized as follows. Work related to the current study is discussed in the next section.
Then, the motivation for the proposed negation query handling engine is discussed. Later
sections cover the design, technical details and evaluation of the proposed engine. Finally, the
paper is concluded by the conclusion and future work section.

RELATED WORK

All developed natural language interfaces differ from each other in one way or another. Some
natural language interfaces focus on giving users the freedom of entering natural language
query using free vocabulary (Lei et al., 2006), while others allow users to enter natural language
query using a restricted vocabulary (Cimiano et al., 2008; Vanessa et al., 2007). Other than
natural language interfaces, there are also interfaces that allow the user to search knowledge
bases by inputting formal language queries. Such search engines are of two types; first is the
form-based search engine, which provides web forms as a means of specifying queries (Rocha
et al., 2004), and second is the RDF-based querying search engine which supports RDF-based
querying languages at the front end (Rocha et al., 2004).

SHOE (Heflin & Hendler, 2000) is an interface which comes in the category of form-based
semantic search engine. This system is based on a semantic mark-up language. SHOE (Heflin &
Hendler, 2000) allows users to define and associate vocabularies which can be understandable
by the machines. The system uses knowledge annotator to add up SHOE annotations to the
documents. Naive users often feel uncomfortable using SHOE as the web forms require
familiarity with the knowledge bases being searched. On the other hand, adding annotations
with SHOE is more time consuming as compared to standard XML.

A Negation Query Engine for Complex Query Transformations

195Pertanika J. Sci. & Technol. 21 (1): 283 - 298 (2013)

Corese (Corby et al., 2004) search engine is from the category of RDF-based querying
language fronted search engines. This search engine is dedicated to RDF metadata. The Corese
engine internally works on the concept of conceptual graphs (CG). The query and the ontology
schema are translated from RDF to conceptual graphs (CG) in order to perform matching
operations. The limitation with such search systems is that they require the users to be familiar
with both the knowledge base and the querying language used.

The kind of interfaces that take a formal language query for input remains comparatively
less preferred by users than the natural language query interfaces. The reason is the fact that
users require training of the system as well as reasonable knowledge about the knowledge bases
being searched. When talking about the systems that support natural language, SemSearch
(Lei et al., 2006) is an interface that was designed to take input in natural language from the
users. The system has idealized Google for the style of its interface. In particular, SemSearch
(Lei et al., 2006) uses three heuristic operators to support its search. The use of these heuristic
operators helps the system to have a clue of what information exactly the user wants from the
knowledge bases. SemSearch relies on simple string matching algorithms rather than using
complex techniques like WordNet (Fellbaum, 1998) in order to reduce the response time of
the system. The use of the simple string matching algorithms reduces the response time but at
the same time, it can be a reason for losing some good matches in certain situations.

AquaLog (Vanessa et al., 2007) is a natural language based question-answering system.
It takes input in the natural language query and answers on the basis of ontology loaded in
the system. AquaLog has a learning mechanism in which it helps to improve the performance
over time. Relation Similarity Service (RSS) is a component of AquaLog and it is considered
as the backbone of the system. In case of any ambiguity between multiple terms, the RSS
module directly interacts with the user to disambiguate between the terms of natural language
and the concepts of the knowledge bases. The limitation with AquaLog is that it can at the
most translate the query to two triples.

QuestIO (Tablan et al., 2008b) is another natural language interface that was designed to
take natural language input from the user. It was designed to cater language ambiguities, handle
incomplete and grammatically incorrect queries. QuestIO focuses to be an open domain system
that does not require any customization by the users, as well as any training to use it. This
system uses light weight linguistic processing that allows the user’s text to be fully analyzed
in the query processing part for the identification of ontology concepts and property names.
QuestIO works by finding implicit relations which are not clearly stated in the user query. The
limitation is that it only works with directly explored relations (Tablan et al., 2008b).

The creators of QuestIO (Tablan et al., 2008b) later developed another natural language
interface named FREya (Damljanovic et al., 2010). The focus of creating FREya was to further
reduce customization efforts and to introduce clarification dialogues mechanism to avoid
empty results. The clarification dialogue mechanism in FREya helps users to get answers
in case the system is not able to find any answer (Damljanovic et al., 2010). If the system
does not come up with an answer automatically, it will interact with the end users to get a
clue for the right answer. The user’s selections are saved over time and the system learned
to place correct suggestions on top of any similar query next time on the basis of the saved
user selections. FREya reported satisfactory results for the learning mechanism in it but its

Rizwan Iqbal and Masrah Azrifah Azmi Murad

196 Pertanika J. Sci. & Technol. 21 (1): 283 - 298 (2013)

correctness without clarification dialogues was considerably low as compared to other similar
systems like PANTO (Wang et al., 2007) for the same data. Damljanovic et al. (2010) also
reported that FREya was not able to answer some questions correctly while evaluating. The
questions that were answered incorrectly included those with negation. PANTO (Wang et al.,
2007) is another natural language interface that is portable and does not make any assumption
about any specific knowledge domain. It functions in a way that it picks the words from the
natural language query and map them to entities (concepts, instances, relations) in the ontology.

The architecture of PANTO (Wang et al., 2007) relies on the existing tools like WordNet
(Fellbaum, 1998) and different string metric algorithm. In PANTO, the Lexicon Builder
automatically extracts ontological resources (Classes, Object and Datatype properties, Literals,
Instances) from the ontology and constructs the Lexicon. The translator is the core processing
engine of PANTO. It receives the processed natural language query from the parser as input
and then performs operations to map the natural language entities to the ontological entities.

PANTO uses an off the shelf parser which relies on limited NLP techniques, and this
restricts the scope of queries which can be handled by the system (Wang et al., 2007). Wang
et al. (2007) also discussed the limitation of PANTO in relation to the weakness in supporting
complex user interactions. The current version of PANTO deals with superlative, comparative,
conjunction and negation kind of queries. Nonetheless, PANTO has not discussed how
effectively it can deal with the queries. PANTO discusses that it can handle negation queries
including “not” and “no”. However, Wang et al. (2007) have not discussed in detail how
effectively PANTO can deal with negation queries or what the precision of the system is in
catering particularly with negation queries. From the literature, it is found that all systems have
discussed about their supports for catering negation queries. Wang et al. (2007) mentioned that
it could support negation queries but did not give any detail that to what extent and precision
it could cater them. Damljanovic et al. (2010) discussed about catering negation cases, and
explicitly mentioned that their system had failed to answer some questions correctly and
amongst them were questions with negation.

MOTIVATION FOR NEGATION QUERY HANDLING ENGINE

After studying the trend in some natural language interfaces over the years, it is found that
the state-of-art interfaces are particularly focusing on some specific features. Some of these
features include portability (Wang et al., 2007), users’ interaction (Damljanovic et al., 2010),
automated learning (Vanessa et al., 2007; Damljanovic et al., 2010), lesser customization
(Lei et al., 2006), detecting and resolving the ambiguity in natural language (Lei et al., 2006)
and precision in understanding the complexity of the natural language query (Wang et al.,
2007; Tablan et al., 2008a). For a natural language interface to be effective for the user, it is
very critical for it to understand the complexity of the natural language query inputted by the
user. Over the years, researchers have improved from simple string matching algorithms to
advance natural language processing engines which are designed to understand the complexity
of natural language.

It was found that natural language interfaces have the capability to deal with different types
of queries such as instance superlative, comparative, conjunction and negation. Systems like

A Negation Query Engine for Complex Query Transformations

197Pertanika J. Sci. & Technol. 21 (1): 283 - 298 (2013)

PANTO (Wang et al., 2007) and FREya (Damljanovic et al., 2010) have discussed negation
queries. In particular, PANTO has given no details about the extent, details and precision for
which it can handle the negation queries. FREya only discussed that the system was not able
to answer some questions correctly and amongst them were questions with negation. Natural
language queries with negation are very usual and expected input from the user. A review
of relevant literature has shown that the Mooney dataset (MooneyData, 1994) and AquaLog
dataset (AquaLogData, 2007) are widely used for the evaluation of natural language interfaces
(Wang et al., 2007; Damljanovic et al., 2010; Tablan et al., 2008a; Kaufmann et al., 2007).
These datasets have negation queries in them.

A natural language interface with the capability to handle negation queries must be able
to correctly interpret the intent of the user’s query to its equivalent formal query language. In
order to correctly interpret the intent of the user’s query, the natural language interface cannot
just rely on simple keyword detection and simple string matching algorithms. An effective
negation handling interface must have a sophisticated algorithm that is governed by a set of
rules. These rules should give a deeper insight into the natural language interface about the
negation query under consideration. An in-depth understanding of the negation query will
facilitate the interface to make appropriate transformations of natural language query to its
equivalent formal query language, keeping intact the intent of the user.

The absence of such an algorithm focusing to handle negation queries has become a
motivation for this research. This research came up with a negation query handling engine
which incorporates an algorithm that has been particularly designed to cater negation queries
in an effective manner. The next section discusses the design of negation query handling
engine in detail.

THE DESIGN OF NEGATION QUERY HANDLING ENGINE

The negation query handling engine was designed to cater effective machine level transformation
for the natural language query entered by the user. The engine was designed to perform some
processes in a sequential manner. There is also a set of natural language query transformation
rules which are implemented according to the structure of the natural language query entered
by the user. Fig.1 shows how the negation query handling engine works.

The processes performed by the negation query handling engine

The negation query handling engine performs three processes on the natural language query
entered by the user. The first process identifies the negation keywords in the natural language
query. The second process is responsible to identify the coordinating conjunctions in the
natural language query structure. The final process is responsible to make sure that the natural
language keywords are correctly mapped to the corresponding ontological resources (Classes,
Object and Datatype properties, Literals, Instances) and the machine level transformations are
correctly carried out.

Rizwan Iqbal and Masrah Azrifah Azmi Murad

198 Pertanika J. Sci. & Technol. 21 (1): 283 - 298 (2013)

Identification of negation keywords

This process deals with the identification of negation keywords. The engine intelligently
identifies keywords with a broad coverage in the aspect of negation. Some previous systems
like PANTO (Wang et al., 2007) suffer limited support for negation queries. In particular,
PANTO handles those queries including “not” and “no”. This engine was designed to handle
several kinds of queries including those with does not/ do not/ don’t/ excluding/ except/ leaving/
none/ and other than. The proposed engine also has provision to handle affirmative-negative
and affirmative-negative-pseudorel type of queries, whereby such queries can be found in the
AquaLog data set (AquaLogData, 2007). In addition, the proposed engine does not only identify
negation keywords but also makes appropriate transformations from the natural language to
formal query language (like SPARQL) keeping in integrity the negation sense of the user query.

Detection of coordinating conjunctions

After the occurrence of negation keywords, the engine looks for coordinating conjunctions in
the natural language query. Coordinating conjunctions include for, and, nor, but, or, yet, so.
If a coordinating conjunction is detected, only the keywords before it will be considered for

Fig.1: Negation query handling engine

A Negation Query Engine for Complex Query Transformations

199Pertanika J. Sci. & Technol. 21 (1): 283 - 298 (2013)

query formation. The occurrence of a coordinating conjunction depicts that the query has more
than one condition in it. For example, if the Mooney dataset (MooneyData, 1994) which is
used as a test data for many natural language interfaces to ontologies is considered, it is found
that there are many queries in it which have more than one condition in them. The existence
of more than one condition in the user’s query makes query transformation a complex task
especially when handling negation queries.

Identification of ontological resources and natural language query transformation

This process deals with the identification of ontological resources. After the identification
of ontological resources (Classes, Object and Datatype properties, Literals, Instances), the
engine performs the transformation of natural language query to its formal query language
equivalent. The engine ensures that the transformation is in alignment with the viewpoint of
the user. The natural language query transformation rules were designed on the basis of some
rules. These rules have been found to be satisfying the negation queries within the Mooney
dataset (MooneyData, 1994) and AquaLog dataset (AquaLogData, 2007).

The natural language query transformation rules

The negation query handling engine transforms natural language query to formal query language
on the basis of some rules. These rules are applied to the natural language query, depending on
the detection of certain scenarios. These rules give an insight into the engine about the intent
of the user query and actions which should be applied on the user’s query for transforming it
into the formal query language equivalent. These rules were tested on the Mooney dataset and
AquaLog dataset, and encouraging results were seen while performing the query transformation.
Table 1 shows some query transformation rules.

Step-by-step processing of the natural language query

The negation query handling engine performs step-by-step operation on the natural language
query inputted by the user. The operations on the natural language query can handle a negation
query with two possible cases. The first case deals with explicit negation words like not/ do
not/ don’t/ excluding/ except/ leaving/ none. The second case deals with affirmative-negative
and affirmative-negative-pseudorel type of queries. Below is the step-by-step processing for
the first case.

1.	 A negation keyword is detected in the user’s query.
2.	 After detecting the negation keyword, the engine looks for a coordinating conjunction.
3.	 If a coordinating conjunction is found, only the keywords before it are considered

for query transformation; otherwise, all the keywords are considered for the query
transformation.

4.	 The engine tries to map the literals and instances from the knowledge base to the
keywords in the user’s query.

5.	 If the engine fails to find an appropriate match for a literal or an instance, it is then
expected that a data or object be detected.

Rizwan Iqbal and Masrah Azrifah Azmi Murad

200 Pertanika J. Sci. & Technol. 21 (1): 283 - 298 (2013)

6.	 Transformations are based on some predefined rules, depending whether a literal/
instance or a data/object property is detected.

7.	 If there is a coordinating conjunction detected at step 3, all the steps will be repeated
for the remaining part of the query.

The step-by-step processing for the second case is as below.
1.	 Is/ Does/ Has is detected at the beginning of the query which ends with a “?”.
2.	 The next step is to look for an instance after the words Is/ Does/ Has.
3.	 If an instance is found, the next step is to find an object property.
4.	 Matching is performed by the algorithm, which excludes Is/ Does/ Has, and

the instance is to find the best match for the object property associated with the
instance.

5.	 Transformations are performed based on some predefined rules and templates.

EVALUATION OF NEGATION QUERY HANDLING ENGINE

The designed negation query handling engine is evaluated using the negation queries in the
Mooney dataset (MooneyData, 1994) and Aqualog dataset (AquaLogData, 2007). The Mooney
data set included a total of 88 negation queries. There are 74 negation queries in the job Mooney
dataset and 14 negation queries in the geography Mooney dataset. There are a total 24 negation
queries in the Aqualog dataset. The Aqualog dataset has divided these negation queries into

TABLE 1: Query transformation rules

Rules Actions

Coordination
conjunction detected.

The query transformation is not based on a single step. The keywords
before the coordinating conjunction are considered for the first step of the
natural query transformation. The remaining part of the natural query is
treated as the second part of a query transformation. After the completion
of the transformation for the first part of the query, the remaining part
of the query will be treated as a different part and all the transformation
processes will be performed from the beginning.

Coordination
conjunction is not
detected.

The query transformation is a single step. All the keywords in the
natural language query are considered for the natural language query
transformation.

Literal or instance is
not detected.

The natural language query refers to an object or data property. Matching
algorithms are run to find the appropriate matches for the object or data
property from a list of ontological resources.

Literal or instance is
detected.

The natural language query has detected a literal or an instance. The next
step is to find the associated data or object property with the detected
literal or instance from a list of ontological resources.

Is/ Does/ Has is
detected at the
beginning of the
Query.

This is the condition that deals with affirmative-negative and affirmative-
negative-pseudorel type of queries. The next step is to detect an instance
in between Is/ Does/ Has and "?" in the query. If an instance is detected,
all the keywords (excluding Is/ Has/ Does) and the instance will then be
matched to find the best match for object property associated with the
instance.

A Negation Query Engine for Complex Query Transformations

201Pertanika J. Sci. & Technol. 21 (1): 283 - 298 (2013)

three different categories. The category names are affirmative-negative, affirmative-negative-
pseudorel and negation. The designed algorithm of the negation query handling engine correctly
transformed 72.7% of the negation queries in the Mooney dataset and 41.6% of the negation
queries in the Aqualog data set to their formal query language equivalent. Table 2 and Fig.2
show the evaluation of the proposed algorithm.

The designed algorithm of the negation query handling engine manifested encouraging
results for the negation queries in the Mooney dataset and AquaLog dataset. All the negation
queries in the Mooney dataset and AquaLog data set were parsed through the algorithm of the
proposed negation query handling engine. Below are some examples of how every query with
negation is individually parsed and the proposed algorithm is evaluated.

Sample Query 1 (Job Mooney data set): “Are there ada jobs outside austin?”

Refer to Fig.3 for details of the sequence of processing natural language in the proposed
negation query handling engine.

Step 1	 : Negation keyword detected: outside.

Step 2	 : Coordinating conjunction not detected. According to the transformation rules,
all the words in the natural language query will be considered for formal language query
transformation (SPARQL).

Step 3	 : Instances are detected: “ada” and “austin”. According to the query transformation
rules (Table 2) if a literal or an instance is detected, the next step is to find the associated
data or object property with the detected literal or an instance from the list of ontological
resources.

Step 4	 : The negation query handling engine will look for the object properties associated
with the instances. The engine will find the associated object properties associated with

Fig.2: Query transformation results

TABLE 2: Results obtained for query transformation

Dataset Total negation
queries

No of queries correctly
transformed to formal query
language

 % of queries correctly
transformed to formal query
language

Mooney 88 64 72.7%
Aqualog 24 10 41.6%

Rizwan Iqbal and Masrah Azrifah Azmi Murad

202 Pertanika J. Sci. & Technol. 21 (1): 283 - 298 (2013)

“ada” and “austin”. As for “ada”, the system will locate “useslanguage” and for “austin”,
the system will recognize “isinCity”.

Step 5: The selected object properties are set into pre-defined template in SPARQL in a
specified format. The basic format is as below. The selected object property is set in the
following sequence of triple.

?subject name of selected property?Var

FILTER(?Var!=(name of instance or literal))

In the case of the exampled query, the exact query transformation in SPARQL will be in
the following format. The negation query handling engine will intelligently identify the intent
of the user in the negation sense and will place a “!” in the filter part of the SPARQL query. In
the case of the example query, the “?City!=p1:austin” means to exclude all those jobs which
are not in “Austin” city.

SELECT ?subject ?Lang ?City

WHERE{?subject a p1:ITJob.

?subject p1:usesLanguage ?Lang.

?subject p1:isInCity ?City.}

FILTER(?Lang=p1:ada && ?City!=p1:austin).

CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK

This paper has proposed a negation query handling engine that was specifically designed for
handling negation queries. The designed negation query handling engine was evaluated using
the Mooney dataset (MooneyData, 1994) and AquaLog dataset (AquaLogData, 2007). It
was found that the proposed negation query handling engine correctly transformed 72.7% of
Mooney dataset and 41.6% of AquaLog dataset negation queries to their formal query language
equivalent. The proposed engine demonstrated encouraging results. Hence, it is a step forward
towards an effective handling of complex natural language query transformations.

It is an intention for the future to further improve the algorithm so as to bring more
correctness in the negation query transformations. An evaluation of the proposed engine on other
datasets may also lead to new insights, which can be incorporated in the existing algorithm of
the negation query handling engine to make it more effective and robust in handling negation
queries.

A Negation Query Engine for Complex Query Transformations

203Pertanika J. Sci. & Technol. 21 (1): 283 - 298 (2013)

REFERENCES
AquaLogData. (2007). Retrieved from http://kmi.open.ac.uk/technologies/aqualog/examples.html

Cimiano, P., Haase, P., Heizmann, J., Mantel, M., & Studer, R. (2008). Towards portable natural language
interfaces to knowledge bases - The case of the ORAKEL system. Data and Knowledge Engineering,
65, 325-354.

Corby, O., Dieng-Kuntz, R., & Faron-Zucker, C. (2004). Querying the Semantic Web with the corese
search engine. 16th European conference on Artificial Intelligence (ECAI-2004), 705-709.

Cohen, W. W., Ravikumar, P., & Fienberg, S. E. (2003). A Comparison of String Distance Metrics for
Name-Matching Tasks. Workshop on information integration on the Web (IIWeb-03), 73-78.

Damljanovic, D., Agatonovic,M., & Cunningham, H. (2010). Natural Language interface to ontologies:
Combining syntactic analysis and ontology-based lookup through the user interaction. European
Semantic Web Conference (ESWC 2010), 106-120.

Fellbaum, C. (1998). WORDNET: An Electronic Lexical Database. MIT Press, 1998.

Fig.3: The step-by-step processing of the natural language query

http://kmi.open.ac.uk/technologies/aqualog/examples.html

Rizwan Iqbal and Masrah Azrifah Azmi Murad

204 Pertanika J. Sci. & Technol. 21 (1): 283 - 298 (2013)

Heflin, J., & Hendler, J. (2000). Searching the web with SHOE. Workshop on AI for Web Search (AAAI-
2000).

Iqbal, R., Murad, M. A. A., Selamat, M. H., & Azman, A. (2012). Negation query handling engine for
natural language interfaces to ontologies. International Conference on Information Retrieval and
Knowledge Management (CAMP’12), 249-253.

Kaufmann, E., Bernstein, A., & Fischer, L. (2007). Nlp-Reduce: A “naïve” but domain independent
natural language interface for querying ontologies. European Semantic Web Conference (ESWC 2007).

Kaufmann, E., Bernstein, A., & Zumstein, R. (2006). Querix: A Natural Language Interface to Query
Ontologies Based on Clarification Dialogs. International Semantic Web Conference (ISWC 2006),
Springer, 980-981.

Lei,Y., Uren, V., & Motta, E. (2006). Semsearch: a search engine for the semantic web. Managing
Knowledge in a World of Networks, 4248, 238-245.

Motro, A. (1986). Constructing queries from tokens. SIGMOD international conference on Management
of data (SIGMOD ‘86), 120-131.

MooneyData. (1994). Retrieved from http://www.cs.utexas.edu/users/ml/nldata.html.

Rocha, C., Schwabe, D., & de Aragao, M. (2004). A Hybrid Approach for Searching in the Semantic
Web. 13th International conference on World Wide Web (WWW’04), 374-383.

Ramachandran, V. A., & Krishnamurthi, I. (2009). NLION: Natural Language interface for querying
ontologies. 2nd Bangalore Annual Compute Conference (COMPUTE’ 09), 1-4.

Tablan,V., Damljanovic, D., & Bontcheva, K. (2008a). A natural language query interfaceto structured
information. 5th European semantic web conference on The semantic web: research and applications
(ESWC’08), Springer Berlin/Heidelberg, LNCS, 5021, 361–375.

Tablan, V., Damljanovic, D., & Bontcheva, K. (2008b). A natural language query interface to structured
information. European Semantic Web Conference (ESWC 2008), 361-375.

Vanessa, L., Victoria, U., Motta, E., & Michele, P. (2007). AquaLog: an ontology-driven question
answering system for organizational semantic intranets. Journal of Web Semantics, 5, 72–105.

Wang, H., Zhang, K., Liu, Q., Tran, T., & Yu, Y. (2008). Q2semantic: A lightweight keyword interface
to semantic search. European Semantic Web Conference (ESWC ‘08), 584–598.

 Wang, C., Xiong, M., Zhou, Q., & Yu, Y. (2007). PANTO: A Portable Natural Language Interface to
Ontologies. European Semantic Web Conference (ESWC ‘07), 473-487.

Zhou, Q., Wang, C., Xiong, M., Wang, H., & Yu, Y. (2007). Spark: Adapting keyword query to semantic
search. International Semantic Web Conference (ISWC)/Asian Semantic Web Conference (ASWC),
694-707.

http://www.cs.utexas.edu/users/ml/nldata.html

